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CHAPTER 1. INTRODUCTION 

1.1 A Historical Note 

Memory ICs designed for space and military applications are expected to meet a set of 

stringent requirements in order to maintain reliability in a hostile environment Nonvolatility, 

low power consumption, radiation hardness and a wide temperature operating range are 

some of those. For a long time, only plated wire memories were able to meet the above 

criteria. 

Magnetoresistive random access memories (MRAMs) were originally developed as a 

replacement technology for plated wire memories which consume high power, have large 

cells that do not scale and are expensive. The basic memory cell of this technology, which 

successfully combines integrated circuit and magnetic thin film processes to fabricate 

nonvolatile and random access memory ICs, was developed and patented by Dr A V Pohm 

and Dr J M Daughton in 1983. 

1.2 The Memory Ceil and Access Mechanism 

The MR memory technology is based on two fundamental material properties of thin 

magnetic films [2]. One is the preference for the magnetization to lie along a single axis in 

one of two anti-parallel states, which is known as uniaxial anisotropy (Figure 1.1). This 
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preferred axis—called the easy axis—is determined by the direction of a strong magnetic 

orienting field applied during film deposition and/or annealing. 

The other fundamental property is magnetoresistance, or the change in the electrical 

resistance caused by an applied magnetic field. This change in resistance depends on the 

angle the current makes with the magnetization according to the formula, 

R = RO + ARCOS20 (1.1) 

where 

Ro = the resistance when the current and magnetization are perpendicular to each other 

AR = magnetoresistance term 

0 = angle between the current and the magnetization 

The ratio AR/R is called the MR coefficient (CMR) and it is ordinarily between 0.01 and 

0.06 for most ferromagnetic alloys. 

Storage of a bit in a MRAM cell uses the anisotropic nature of the film. Whether it is a 

"1" or a "0" depends on which anti-parallel state along the easy axis the magnetization vector 

is in (Figure 1.1). The sensing of a stored bit makes use of magnetoresistance, i.e., the 

change of resistance with current in the presence of a magnetic field. 

The basic storage cell is a sandwich structure made of two 150 °A layers of magnetic 

film (65% Ni, 15% Fe and 20% Co) separated by a 50 ®A non-magnetic layer (Ta). The 

design is such that the uniaxial anisotropy axis of the magnetic film is perpendicular to the 

long dimension of the element (Figure 1.2). Thus, in remnant "1" or "0" states, the 

magnetization points across the cell with the magnetizations in the two films oppositely 

directed (Figure 1.3). This greatiy reduces the demagnetizing fields and permits high cell 

density. 
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Figure 1.3 : Orientation of Magnetization in a Memory Cell 

A memory cell is accessed by applying a "sense" current (Is) through the cell itself 

together with a "word" current (Iw) through the overlaid, orthogonal word line which is 

electrically isolated from the cell (Figure 1.2). The resultant magnetic field generated by 

these two currents produces the required switching or rotation of the magnetization vector 

(M). 

When writing a bit. Is provides the easy-direction magnetic field. (Positive 1$ stores a 

"0".) The magnetization vector (M) switches only if the sense field (Hg) applied by the 

sense current (Is) opposes M, and the resultant applied magnetic amplitude IHs + (due 

to Is and Iw), exceeds a minimum threshold value. Therefore, the magnitude of Iw is 

selected to be well above the threshold. Figure 1.4 shows the switching threshold 

characteristics of a typical MR memory cell. These threshold curves may shift along the x-

axis depending on the device size. 
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Figure 1.4: Switching Thresholds 

If a positive Is is applied together with a positive Iw of a magnitude below the 

threshold, the magnetization vector M rotates, and then returns to its original state when Ig 

and Iw are removed. Thus it is possible to read the stored bit non-destructively. This is 

called the unipolar read mode since both write and read word currents are in the same 

direction. A recently discovered, alternative read mode uses a negative word current with the 

same magnitude as the write word current, to achieve non-destructive readouts with signal 

levels increased by a factor of four over the original unipolar read mode [7]. This new 

mode, called the reversed read mode, is preferred since it reduces memory access time and 

improves the operating margins. 
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The combinations of sense and word current polarities used for read and write 

operations in the reversed read mode are shown in Table 1.1. 

Figure 1.5 shows the rotation of the magnetization vector (M) during a read. If the ceE 

contains a "1", the sense field (Hg) opposes the stored flux of the bit and the rotation of M is 

Table 1.1 The word and sense current polarities for R/W operations 

Operation Word current polarity Sense current polarity 

Write positive positive - stores a "0" 

negative - stores a "1" 

Read negative positive 

Ig ^ Is 

V 
Iw Iw 

Stored 0' Stored '1' 

Figure 1.5 : Rotation of Magnetization during a Read 
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large [2]. If the cell contains a "0", Hg aids the stored flux and the resulting rotation of M is 

small. Therefore, according to equation (1.1), the resistance of the cell is larger in the 

former case and smaller in the latter. Thus a "1" can be distinguished from a "0". 

The fuU response of a 1.8x18 |im^ memory cell for a value of Is of 3.5 mA is shown 

in Figure 1.6 [7]. As explained above, the voltage across a cell containing a "1" is higher 

than that of a cell containing a "0" due to the MR effect This voltage difference is the output 

signal (Vsig) which is amplified to full logic levels during a read. Since there is no danger of 

switching when a negative word current is applied, a larger magnitude of word current can 

be applied in reversed read mode, thus increasing the output signal to about four times that 

of the unipolar mode. In reversed read mode, Vsig (for the current fabrication process) can 

be approximated by, 

Vsig = ct Is Rs (1.2) 

where 

Is = sense current 

Rs = cell resistance (along the sense line) = Rsh * Lceii / Wceii 

a = a process dependent constant which includes CMR as a factor 

(a = 0.005 for the current process) 

Typically, the sense current is 3 mA, the word current is 30 mA and the cell sheet 

resistance Rsh is 10 Q/sq. Thus the sensed signal Vsig is directly dependent on the resistance 

or the aspect ratio (Lceii / Wcell) of the cell. 

Therefore, scaling of dimensions doesn't affect the signal level as long as the cell aspect 

ratio is maintained. This is a remarkable property of MRAM cells which favours high 
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density memories, possibly at the lithographic limit On the other hand, it is possible to 

increase the output signal by increasing the cell aspect ratio, in order to design faster 

memories at lower densities. It has been shown that it is possible to design MRAMs with 

access time in the range of 10-35 ns at a bit density of 0.25 Mbits/cm^ [13]. 

1.3 Memory Ceil Organization and Fabrication 

In a MRAM, the memory cells are organized in a 2-D array with the sense lines and 

word lines providing random accessibility. This organization also makes provision for 

sharing the support electronics among memory cells (Figure 1.7). 

Fabrication of these devices can be easily implemented using conventional 

semiconductor processes [2]. Figure 1.8 shows the cross section of a memory cell [7]. 

During fabrication, the memory cells are laid out on an integrated circuit wafer, fabricated up 

through and including contact cuts to the underlying transistors [2]. Therefore, it is possible 

to bury some of the support electronics and minimize chip area. 

The first step in the fabrication process is the deposition of the magnetic sandwich and 

the first metal layer. This is typically done using conventional sputtering deposition 

techniques. The first metal and the magnetic sandwich are then etched to form the sense 

lines. Next the first metal is etched away from the areas where cells are desired. This leaves 

first metal for connections to other cells on a sense line (shorting bars) and for the other on-

chip electronics. Then, an insulating layer is deposited, and vias are etched where needed in 

the circuitry. Finally, the second level metal is deposited and etched to form word lines and 

interconnections to the on chip electronics (Figure 1.8). 
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Therefore, in a standard CMOS process, only one additional mask is needed to 

fabricate MRAMs. This is a definite advantage over DRAMs which typically use 18 masks, 

and implies con^aratively low production costs in a mass scale production environment 

1.4 Properties of MRAMs 

The key desirable properties of MRAMs are summarized below. 

(1) Nonvolatile- These memories do not require refreshing and do not lose the 

contents when power is removed. Therefore, the average power 

consumption is quite low. 

(2) Radiation Hard - The magnetic nature of the storage cells makes these memories 

radiation hard and therefore suitable for space and military 

applications. 

(3) Unlimited writes with no wear-out phenomena -

Write stability tests performed on 2x20 [im^ memory cells by 

subjecting them to a total of 2.0x10^^ write operations ( at 60 MHz 

for 15 months) has shown the cell behavior to be similar to plated 

wire or magnetic core cells, with no wear-out phenomena as in the 

case of ferro-electric cells [8]. 

(4) Non-destmctive readout 

(5) Random Accessibility 

(6) Low cost processing with typically one mask beyond a standard CMOS process 

(7) Logic level compatibility with single 5 V supply 
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(8) High Densities - Cells do not have contacts and share the support electronics. It is also 

possible to scale the cell size without loss of signal. 

(9) Range of possible access times -

Studies have shown that a write operation can be completed within a 

few nanoseconds [14]. The speed density trade-off governs the cell 

size needed to meet a specific read time, and it is possible to achieve 

access times as low as 10-35 ns (15x25 [im^/bit) [12] or as high as 3 

|is with unipolar read (8.5x9.5 mm^/Mbit) [6]. 

Thus it can be seen that these memories are suitable for a wide range of memory 

applications, from disc caches to high speed RAMs. 

1.5 MRAM and the Computer Memory Spectrum 

Today, the computer systems place an enormous demand on the speed and capacity of 

their memory subsystems in order to achieve high performance. In fact, the major portion of 

the computer hardware market is on memories ranging from semiconductor memories to 

hard disks and tapes. Fast memories are more expensive than the slow ones as shown by 

the "Cost vs Access time Relation of Memory Technologies" in Figure 1.9 [5]. To be 

commercially successful, memories need to fit on the technology curve which is a moving 

target that produces an approximately 25% reduction of price every year. There exists a clear 

gap on the technology curve between DRAMs and disc drives, with no cost-effective 

memory technology in the 200ns - 10ms access time range. A memory technology which 

can fit in that gap would be very useful for the performance enhancement of computer 

systems. 



www.manaraa.com

13 

$100000 r 
SR - Static RAM 
DR - Dynamic RAM 
D - Hard Disk 
OD - Optical Disk 
HT - 1/2 inch Tape 
QT - 1/4 inch Tape 

$10000 rsK 
Memory 

Gap 

$1000 : 
iBubbiei 

qr 'D op 

iiinnt itiiimll I  IIIHIP 11 mil 11N 

Cost 
per $100 t 

MByte 

Access Time (seconds) 

Figure 1.9: Cost vs Access Times for Current Memory Technologies 

It is possible to reduce the cost of MRAMs by increasing the density at the expense of 

speed. Therefore, it has the potential to fit in the gap between DRAMs and disks on the 

Technology curve. Such a memory fabricated using wafer scale integration would be very 

well suited for disk caches [2]. 

At present, DRAMs have reached a density of 16 Mbits in 75 mm^ with an access time 

of 200 ns. The MRAM design presented here achieves a density of 1 Mbit in 50 mm^ with 

an access time of 800 ns/byte. A newly discovered phenomena called the Giant 

Magnetoresistive (GMR) effect which increases the signal by a factor of 7.5, implies the 
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possibility of increasing the speed as well as the density of MRAMs. Therefore, it is also 

possible for MRAMs with OMR bits to compete with DRAMs for the computer main 

memory market MRAMs will have the added advantage of a low number of mask levels, 

nonvolatility and no soft-error sensitivity over DRAMs. 

Today, nonvolatile programmable memories such as EPROMs, EEPROMs and Flash 

memories also play an important part in system design, with applications in 

microcontrollers, remote battery powered systems, flight data recorders and communication 

equipment where parameters often change to accommodate different formats. 

EPROMs offer bit densities as high as IM, read times between 100 -200 ns, but must 

be taken off-line to be erased with UV light prior to reprogramming and allows a maximum 

of 100 write cycles [4]. Therefore, the write time for an EPROM can take well up to 20 

minutes. EEPROMs are easily reprogrammable, typically with 160 jis/byte write time, 120 

ns read time, 256 Kbit density, and allow a maximum of 10^ write cycles. Flash memories 

are expected to fill a niche between conventional EPROMs and EEPROMs by offering the 

former's density and the latter's reprogramming convenience. A typical flash memory has 1 

Mbit density, 200 ns access time, 525 jxs/byte write time, but can support only a maximum 

of 10^ write cycles. 

It has been shown that the MRAMs can achieve speeds as high as 35 ns with a density 

of 256 Kbits/cm^ [12]. With GMR bits, the density is expected to increase by 50% for the 

same speed. Therefore, MRAMs are better suited for nonvolatile programmable memory 

applications. 

SRAMs are very high speed memories with typical access times of 5 - 10 ns in ECL 

and 20 -50 ns in CMOS. The memory cell has 4 to 6 transistors and no refresh requirement 

The high cost limits SRAM applications to high speed caches and registers. Battery backed 

SRAMs are often used to retain critical data at the event of a power loss. High speed 
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MRAMs will be a better alternative to battery backed SRAMs which tend to be quite bulky. 

Also, MRAMs can be used instead of SRAMs in programmable logic devices (PLDs), 

where SRAMs are used for storage of PLD configurations [10]. 

Last but not least, MRAMs are the best technology to replace plated wire memories in 

military and aerospace applications since they were designed for that purpose. 

1.6 State of the Art and Research Trends in MRAMs 

MRAM technology has shown rapid development in the past few years. A considerable 

amount of more work is needed to ensure the ability of this technology to keep up with the 

developments in the semiconductor industry and be commercially viable in the global 

memory market 

Honeywell Corp. is currently producing 16 Kbit MRAM chips. This uses a triple 

redundant cell which has 3 memory elements (each of 60 Q with a CMR of 2-2.5%) to 

achieve sufficient reliability. The nominal sense signal is 3 mV, A "current mode" sensing 

scheme which uses tightly controlled sense current sources, and compares the accessed 

element output with that from a duplicate 'ping-pong' matching array to determine the state 

of a bit, is implemented on this chip. Some key parameters are: Is = 3.5 mA, Iw(read) = 45 

mA, Iw(write) = 30 mA, and the output resistance of the current source Rout = 10 k£2. 

["Current mode" sensing is described in Chapter 2.] 

There are three main research areas which are being pursued at present. 

1. Yield Enhancement and Defect Analvsis -

It is very important to identify possible defects and failure mechanisms and their relation 

to the manufacturing process in order to improve the yield and reliability. Several 
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discoveries made within the past year or so have improved the expected yield to 1 bad 

bit in 1000 to 10,000. 

2. Higher Magnetoresistance -

Researchers at IBM and NVE have found that it is possible to improve the MR 

coefficient of materials using the 'spin valve' effect (GMR materials). NVE has 

produced materials with a MR coefficient of 6% which is three times that of permalloy. 

An increased CMR produces a proportional increase in the sense signal which can be 

used to improve the read access time and achieve higher density. It is also expected the 

spin valve materials will have higher values of Rsh (approximately 25A) which would 

result in much lower cell aspect ratios and therefore, higher cell density. 

3. Sensing Scheme and CeU Design for High Densities -

In typical MRAMs designed so far, the on chip support electronics occupy more than 

50% of the chip area. It is essential to improve the density of support circuits as well as 

the memory cells in order for MRAMs to achieve a higher density than the DRAMs. The 

existing sensing schemes are not designed for such high densities and therefore, a new 

technique is required. The work being done at Iowa State University on "1 Mbit 

MRAM" falls into this category. 

1.7 1 Mbit MRAM Project Overview 

The research effort at Iowa State University was focussed on circuit densification and 

sensing issues involving both elements and electronics, which were implemented using a 

1Mbit MRAM design with the following specifications. 
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Memory Size 1 Mbit 

Chip Area 0.5 cm^ @ minimum feature of 0.8 |J,m 

% MR cell area > 50% of the chip area 

Byte read time < 1 |is (with all 8 bits read in parallel) 

Yield 90% with a failure rate of 1/4000 

Among the contributions are an improved logical organization of bit arrays with buried 

transistors, redundancy schemes [3], and a new sensing technique which uses voltage mode 

small signal sensing and self referencing [11] to improve the density and accommodate 

future low voltage operation. 

This thesis presents the work done in the development of a new voltage mode sensing 

technique and the design of the low noise front end of the very small signal sensing scheme. 
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CHAPTER 2. SENSING MODES 

All MRAMs that have been fabricated so far use current mode sensing. Voltage mode is 

a new alternative that is being investigated using the 1 Mbit MRAM design. 

2.1 Current Mode Sensing 

In current mode sensing (Figure 2.1), a tightly controlled constant current source is 

used to supply the sense current through the memory cell. The switching transistors Tpp, 

Tnn, Tpn and Tnp determine the direction of current A current source and the switching 

transistor pairs are shared by multiple sense lines, each with multiple sense elements. A 

sense line is selected by turning on the corresponding gate transistor. The cell output signal 

is sensed at point X. Since the applied sense current is a well controlled constant, any 

changes in the element resistance is reflected on the sense point voltage (Vx) which is then 

taken to the sense amplifier. Since the output impedance of the current source is much larger 

than the equivalent resistance of the 'on' transistors and the memory cells on a sense line, a 

large percentage of the signal appears at the sense point. This is typically in the range of 

85% - 95% [1]. 

In order to maintain a sufficient Signal to Noise Ratio (SNR), the output of a cell is 

sensed with respect to that of a dummy cell, and it is necessary to use a separate current 

source to power up the dummy. 
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In the "ping-pong" scheme, each memory cell has its own dummy cell and effectively 2 

memory cells are used to store a data bit. i.e., the cell where the bit is stored and the 

corresponding dummy ceil where the complement of the bit is stored. This achieves a higher 

signal to noise ratio by doubling the signal, at the cost of increased cell area. 

2.2 Voltage Mode Sensing 

Voltage mode sensing eliminates the tightly controlled current source (Figure 2.2). 

Instead, the supply voltage (VDD) IS temperature compensated to maintain the sense current 

at its nominal value. The transistor pairs Tpp, Tnn. Tpn and Tnp perform the dual functions 

of supplying the sense current and controlling its direction. The gate transistor selects the 

sense line, and a mux transistor is used to transmit the signal that reflects the change in 

element resistance to the sense amplifier. The optimal signal level is at the mid point of die 

sense line and 50% of the cell output signal appears here. TMs is called mid-line sensing. 

The dummy line is in the same sense line array and shares the switching transistor 

pairs, with the accessed sense line to power up. 

2.3 A Comparison of Current Mode and Voltage Mode 

For a fair comparison, both the current mode (CM) and voltage mode (VM) need to be 

analyzed under similar conditions. Therefore, two basic designs, each done to achieve the 

same cell array area were used for the comparison. 
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2.3.1 Cell Size Determination 

Figure 2.3 shows the memory element used in the designs for a 0.8 micron process. Its 

effective resistance is given by, 

Relt~ K.sh * Lelt/Wgit + Rc (2.1) 

where Rc is the contact resistance in the taper which is approximately 10 Q (Figure 2.3). 

For the voltage mode design, an element with Leit = 7 |im and Weit = 1.4 |im was 

selected. 

Relt (VM)= 60 £2 

No. of elements per sense line in VM = 16 

Therefore, in voltage mode, the estimated length of a sense line, Lg (= the length of memory 

cell array) is given by, 

Ls (VM) = 16*(Leit+L,ap) + ACD + AGM (2.2) 

t^r taper 

Figure 2.3 : Memory Ceil Dimensions 
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where ACD is the allowance for central decoding (16 |im) and AGM is the allowance for 

gate and mux transistor contacts (32 jjm). 

A Ls (VM) = 208 urn 

The element size for the current mode design was determined as follows : 

No. of elements per sense line in CM = 8 

Therefore, the number of sense lines in the current mode design is twice that of the voltage 

mode design. Thus, in order to keep the cell array areas the same, the sense line lengths in 

the current mode should be halved. 

.% Ls (CM) = 104 ^im 

And in CM design AGM reduces to 24 |im since there are no mux transistors. 

.*. Leit+Ltap = 8|JminCM 

and Reit (CM) = 45 G 

2.3.2 Estimation of Equivalent Noise Resistances 

The switching transistors operate in the Ohmic region. The equivalent noise resistance 

of an Ohmic transistor is its dc resistance given by 

Rdc = Vds/Ids = {K*W/L (Vgs -Vf Vds/2) }- (2.3) 

The gate and mux transistors are sized so that they can be buried under the magnetic 

elements in the sense lines (Figure 2.4). Even though they operate in the Ohmic region, the 

equivalent resistances cannot be accurately modeled using equation 2.3 since it does not 

account for source and drain spreading resistances. Therefore, a distributed resistive ladder 
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network approach is used to determine the equivalent resistances as explained in Section 

2.3.4. 

In current mode design, the current source transistor is operating in saturation and its 

equivalent noise current is given by 

indt = sqrt { 8kT gm /3} (2.4) 

where 

gm = K*W/L(Vgs-VO (2.5) 

A differential preamplifier with an equivalent noise resistance (Rnt) of 125 Q at each 

input gate is assumed for both designs. It is also assumed that the output of the accessed 

sense element is sensed relative to that of a shared dummy element which has a bit '0' stored 

in it 

The effects of heating and scaling of dimensions on the equivalent noise resistances, are 

discussed in Section 2.3.5. These effects are reflected in the noise resistances and noise 

currents computed in Sections 2.3.6 and 2.3.7. 

2.3.4 Gate and Mux Transistor Modeling 

The layout and the dimensions of the gate and mux transistors together with the 

corresponding circuit models are shown in Figure 2.5. 

The current flow from the drain to source in the gate transistor takes place as shown in 

Figure 2.6(a). Therefore, the gate transistor can be modeled as a distributed resistive ladder 

network as shown in Figure 2.6(b). There, rp is the channel resistance per unit width of 

channel and is the diffusion resistance per unit width of the transistor along the drain or 

source. 
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x=0 
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rs/2 rs/2 rs/2 rs/2 rs/2 

(b) 

Figure 2.6 ; Modeling of Gate Transistor 

x=W 

Tp = R(ic*W £2|im 

where Rdc is as defined in eq. (2.3) 

and rs/2 — Rsh(n-diffusion) / d Q/|j.ni 

with Rsh(n-diffusion) = 3.03 Q/sq for the current process. 

The voltages and currents in the network are given by. 
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DV(x)= -rg I(x) (2.6) 

DI(x) = - V(x)/rp (2.7) 

using D operators. The above two equations can be combined to form 

D2l-(rsAp)I = 0 (2.8) 

D2V-(rs/rp)V = 0 (2.9) 

which has roots +/-a where a = sqrt (rg/rp). 

Therefore, the solutions are in the form 

I(x) = Aec« + Be-<« (2.10) 

V(x) = Pec« + Qe-<« (2.11) 

Using the boundary condition at x = W where current goes to zero (at the end of the 

transistor), 

I(W) = 0 => A = -Be-2aW 

The total current through the transistor, is given by, 

Id = I(0) = A + B = B(l-e-2aW) => B = Id(l-e-2aW)-l 

From equation (2.6), 

Pe«x - Qae-oa = - rgAe*» - rgBe""^ 

Since the above relation should be true for aU x, 

P= -rsA/a and Q = rgB/a 

Therefore, the solutions are in the form. 
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I(x) = Be-oa [ 1 - e-2a(W-x) ] 

V(x) = B (rs/a) [ e-o» + e-2aW ] 

(2.12) 

(2.13) 

The equivalent resistance of the transistor is given by V(x)/I(x) at x=0. 

.% Req = (rsrp)0-5 (1 + e-2aW) /(i. g-ZaW) 

rch = V(W)/Id= (rsrp)0-5 2e-aW/(i.e-2aW) 

Therefore, the spreading resistance component can be found using, 

Req = 2rsp + Teh 

and the total noise resistance of the transistor is Req. 

In the mux transistor, the spreading resistance component is equivalent to that of the 

source (or drain). 

^sp = Rsh(n-diffusion) * W 

rch is the dc resistance of the transistor which can be found using equation (2.3). Thus, the 

equivalent resistance of the mux transistor is given by 

Req = Tsp + Teh 

Therefore, the equivalent resistance of the mux transistor tends to be higher than that of the 

gate transistor. 

2.3.5 Effects of Heating and Scaling on Noise Resistances 

The effect of elevated temperatures on the sense element resistance is calculated using 

Relt — Ro (1 ocAt) (2.14) 
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where a = thermal coefficient of MR elements = 0.0015 / °C. 

In a MOS transistor, the temperature dépendance of the transconductance parameter K 

is given by, 

K(Ti) = (T(/ri)l-5 * K(To) (2.15) 

where TI and Tq are in Kelvin. To a first order approximation, the temperature dependence 

of dc resistance (Rdc) in a MOS transistor is governed by that of K. 

Shrinking dimensions result in similar scaling of VdDJ currents and gate oxide 

thickness to*. Since K = |j, Cqx, K increases proportionately. 

2.3.6 SNR Calculation for the VM Design 

The estimated bandwidth of the system is 1-5 MHz and therefore the major contribution 

to system noise is from thermal noise. A schematic of a sense line and the corresponding 

noise resistances are given in Figure 2.7. Table 2.1 shows how these noise resistances vary 

with the operating temperature and supply voltage. 

The total noise voltage at the input to the preamplifier is given by 

Vnoise = sqrt { 2 * 4kTAf (Rns + R-nmux + Rnt)} (2.16) 

where Rnt is the noise resistance of the preamplifier referred to the input 

The output signal for mid-line sensing is given by, 

VGIG — 0.0025 Relt 1$ (2.17) 
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Table 2,1 Equivalent Noise Resistances for VM Design 

temp(C) VDD Rnp Relt nelt/line Rng Rnn Rnmux Rnt 

25 3.9 100 60.0 16 116 70 151.7 125 

75 4.3 126 64.5 16 141 88.2 180.17 157.5 

100 4.5 140 66.75 16 154.8 98 199.6 175 

25 2.3 100 60 12 130.4 70 173.59 125 

75 2.6 126 64.5 12 159.6 88.2 217.1 157.5 

100 2.7 140 66.75 12 176.8 98 240.9 175 

The supply voltage Vdd is temperature compensated to maintain a constant sense 

current 

2.3.7 SNR Calculation for the CM Design 

A schematic of a CM sense line and corresponding noise resistances at room 

temperature are shown in Figure 2.8. Table 2.2 shows how the noise resistances and noise 

currents vary with the operating temperature and supply voltage. 

There are 2 dominant noise sources. 

(1) The thermal noise generated by the sense line and the input stage of the 

preamplifier, which is given by, 

Vni = sqrt {2* 4kTAf (Rns + Rnt) } (2.18) 

(2) The effect of the thermal noise generated in each current source can be found 

using, 

Vn2 = sqrt {8/3 * 4kTAf gm* Rns} (2.19) 
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Table 2.2 Equivalent Noise Resistances and currents for CM Design 

temp (C] VDD Rnp Kelt nelt /line Rng Rnn idiit(nA) Rnt 

25 4.5 100 45 8 99.7 70 12.04 125 

75 4.5 126 48.375 8 117.7 88.2 13.67 157.5 

100 4.5 140 50.0625 8 127.7 98 14.56 175 

25 2.7 100 45 6 110 70 13.47 125 

75 2.7 126 48.375 6 131.3 88.2 15.8 157.5 

100 2.7 140 50.0625 6 142 98 16.58 175 

where gm = sqrt {2K *W/L* Ig} 

and K*W/L = 2% / (Vgg - VjZ 

To maintain the current source in saturation with a safety margin (SM), the gate 

voltage should be set according to, 

(Vgs -Vt)max ~ VDD " Is^ns " SM 

Since there are 2 current sources powering the accessed sense line and the dummy, the 

total noise voltage at the input to the preamplifier is given by, 

Vnùise = sqrt { (vni)2 + 2*(vn2)^ } (2.20) 

A reasonable estimate for the output signal for current mode sensing is 95% of the bit 

output signal which is given by. 
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VGIG — 0.00475 RELT IS (2.21) 

2.3.8 Results and Conclusions 

First a nominal supply voltage of 5V was assumed, and the SNR estimations for 

several temperatures ranging from 0 °C to 100 °C were done for both modes. Since the 

voltage mode depends on a temperature compensated voltage supply, VDD was varied from 

3.7V to 4.5V over the temperature range. In the current mode design Vdd was set to 4.5V 

and the safety margin to maintain the current source in saturation (SM) was set to 0.15V. A 

charge pumped 6V supply was assumed for the gate voltages of the mux and gate transistors 

and the nominal sense current was set to 3 mA. 

Then the above procedure was repeated for a nominal supply voltage of 3V. In this 

case, the temperature compensated supply voltage was varied from 2.2V to 2.7V over the 

temperature range. In current mode design, Vdd was set to 2.7 V and SM was reduced to 

O.IV. The gate voltage for the mux and gate transistors were charge pumped up to 3.6V and 

the nominal sense current was reduced to 2.2 mA. 

The results obtained (Table 2.3) indicate that the voltage mode has a superior SNR for 

the same cell array sizes. 

The current source needs to have a very high output resistance to keep the sense current 

constant irrespective of the voltage across it A current source is implemented with MOS 

transistors in saturation and this requires a large voltage drop across the current source 

(typically, about 2V including safety margins). This restricts the number of memory cells 

that can be strung on a single sense line. Studies have shown that optimal performance can 

be achieved when approximately 0.5VDD IS applied across the memory cells. As the supply 
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Table 2.3 Signal to Noise Ratios for VM & CM 

Temp (C) VDD (CM) VDD (VM] Is (mA) SNR (CM) SNR(VM] 

25 4.5 3.9 3.13 43.2 46.69 

75 4.5 4.3 3.10 34.9 39.5 

100 4.5 4.5 3.08 31.3 35.65 

25 2.7 2.3 2.25 31.8 34 

75 2.7 2.6 2.26 25.6 28.58 

100 2.7 2.7 2.20 22.6 25.8 

levels reduce, the voltage across the current source decreases resulting in increased noise 

levels. 

On the other hand, voltage mode sensing doesn't require the use of a current source, 

and therefore, can support more cells on a sense line. Typically, this is double that of the 

current mode scheme. 

The sizes of the switching transistors are comparable in both modes for a given sense 

current Since the current mode design has twice the number of sense lines as in the voltage 

mode, the number of switching transistor pairs too need to be doubled. Therefore, per cell 

support circuit area overhead taken up by these transistors is higher in current mode sensing 

and it further increases due to the current source. (Both the gate and mux transistors are 

buried under the sense lines and therefore do not contribute much to the overhead.) 

Therefore, it can be seen that the proposed voltage mode sense technique achieves 

superior performance with higher SNRs and densities. 
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CHAPTER 3. DEVELOPMENT OF THE FRONT END SENSING SCHEME 

AND ITS SPECIFICATIONS 

3.1 Design Approach and Organization of the 1 Mbit Memory 

The main design goals of this project are, 

1. Memory size - 1 Mbit 

2. Chip area - 0.5 cm^ @ minimum feature size of 0.8 }im 

3. To limit the area occupied by the support electronics to be less than 50% of chip 

area 

4. Byte read time < 1 |is (Block oriented memory with 8 bits read in parallel) 

5. Yield - 90% with a failure rate of 1/4000 

It is necessary to eliminate the duplicate "ping pong" array used to cancel the unwanted 

coupling in early designs, in order to achieve the target density. This is done by going into a 

new "self referencing" scheme which reduces the cell array area by a factor of 2 by 

eliminating the ping pong matching array [11]. In effect, it compares a bit 'zero' signal with 

a bit 'one' signal obtained from the same memory cell. First, the cell output is sensed with a 

positive sense current and this signal is sampled and held in a capacitor. Next, the sense 

current is reversed and the cell output which now corresponds to the inverse of the stored 

bit, is sensed and compared with the first sample. The result of this comparison is either 
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positive going or negative going depending on the state of the bit and it can be amplified to 

give the corresponding logic ou^ut 

Area occupied by the support electronics can be considerably reduced by burying the 

gate and mux transistors under the sense lines. Therefore, the gate and mux transistors are 

sized to fit underneath a sense line [3]. Sparing techniques are used to improve the yield. 

The cell size which depends on the target die area determines the signal level. Voltage 

mode sensing is selected to achieve a better signal to noise performance, and therefore, 

lower access time. 

Figure 3.1 shows the organization of the 1 Mbit memory chip. This memory is divided 

into 32 "double chunks" with one spare double chunk. Each double chunk consists of 8 

"data segments". A data segment contains 256 regular sense lines with 16 elements/line, and 

spare sense lines [3]. 

Each data segment is powered up by its own drive transistors (switching transistors). 

During a read operation, each bit of a byte comes from the 8 segments on a double chunk. 

A word line runs over the entire length of a double chunk, i.e., 2048 sense lines. The 

word drive transistor pairs are shared by 128 word lines. 

sense line pitch = 3|im 

word line pitch = 13|im 

3.2 Cell Size and Signal Levels 

Target area for a 1 Mbit = 0.5 cm^ 

Area occupied by the memory cell array = 0.25 cm^ 

. . Area / memory cell = 25 jim^ 
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Figure 3.1 : Organization of 1 Mbit MRAM Chip 

Therefore, a 1.4x7 [im^ memory element with a 2.5 pm taper which occupies an area of 

24.7 |j,m2 is selected for this design (Figure 3.2). 

The nominal supply voltage is 5V and the operating temperature range is 0°C to 75°C. 

The voltage supply is temperature compensated to keep the sense current (Is) steady at 3 mA 

through out the operating temperature range. The word current (Iw) is set to 30 mA. 

Reit = Rsh * 7/1.4 + 10 = 60 Q 
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9.5|im 

A mm 
M 7 nm 

Cell Area: 2.6*9.5 = 24.7 

Figure 3.2 : Memory CeU used for the Design 

AR = 0.005 Reit = 0.3 A 

output signal available due to midline sensing in VM = AR * Ig /2 = 0.45 mV 

3.3 Feasibility Study and Modifications of the Basic Approach 

The nominal output signal of a memory cell at the input to the sense amplifier is 0.4 

mV. At this signal level, several factors which would have been negligible at higher signal 

levels become critical and need to be accounted for. 

In the proposed self referencing scheme, the removal of pingpong matching array gives 

rise to three problems which need to be eliminated. They are as follows ( a detailed analysis 

is given in Chapter 4) : 
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(1) Temperature Effects 

A 10 degree increase of temperature in a memory cell is sufficient to provide an 

increase in cell resistance (and therefore a voltage) comparable to the signal. 

(2) Bounce in Supply Voltage 

To be realistic, this design allows a maximum of +/-10 mV in the sense and gate 

supplies. Half of supply voltage bounce appears at the input to the preamplifier 

due to mid-line sensing and this can easily mask the cell ou^ut signal. 

(3) Bounce in gate supply 

The gate supply bounce produces approximately 0.4 mV change at the input to the 

preamplifier which is comparable to the signal. 

The most effective solution for these problems is the use of a shared dummy sense line 

which reduces the effect of the above three conditions to be within safety limits as shown in 

Chapter 4. Since the dummy is shared among 256 sense lines in a segment, the area penalty 

is very low and less than 0.5%. The dummy has "0"s stored in all locations, and only 

provides a "0" signal reference for sensing the signal output of the accessed cell. 

If only one dummy ( with "0"s) is used per segment and powered up by the same drive 

transistors, a problem arises when the sense current is reversed to obtain the second sample. 

This is because the "0"s stored in the dummy now begin to act like "l"s when 1$ is reversed. 

This can be avoided by keeping the direction of sense current (Ig) through the dummy line 

unchanged. That implies separate power drive transistors for the dummy and more system 

noise. Therefore, the best alternative is to use 2 shared sense dummy lines; one with stored 

"0"s for positive sense current and the other with stored "l"s for negative sense current 
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With two dummies per segment, the increase of cell array size is still less than 1%. The 

use of 2 dummies is anyway necessary to match the RC time constants at the inputs to the 

preamplifier, and to match the thermal histories of dummy and accessed sense lines as 

explained in the next chapter. 

Use of dummies introduces a new problem of large mismatch signals. This is caused 

by the slight variation in process parameters across a wafer which is common to any 

fabrication process. The sheet resistance of the magnetic double layer can vary by a 

maximum of 2% across a wafer. Therefore, the resistances of a sense line and a dummy can 

vary by 2% in a worst case scenario. This implies a maximum difference signal of about 60 

mV which is much larger than the signal itself. The offset of the preamplifier which is 

estimated to be about 20 mV, and possible mismatch of gate transistors which results in 

about 15 mV maximum, too add to the above 60 mV to produce a total worst case mismatch 

of 100 mV. 

Therefore, it is necessary to use an autozero stage to remove this difference (mismatch) 

voltage before the signal is turned on by powering up the word line. The straight forward 

approach of a single autozero stage is not good enough for this scheme because it produces 

too much noise as explained in Chapter 6. Therefore, a two-stage autozero, which is a high 

speed autozero followed by a low noise slow autozero, is used. 

In previous designs (where the cell output signal was about 3 mV), autozeroing was 

done prior to any amplification stages. But, since the signal in this design is very small (0.4 

mV compared to 3mV), the noise introduced by the autozero stage becomes critical as 

explained in Chapter 6. Therefore, both the signal and the mismatch voltage needs to be 

amplified before sending to the autozero stage. It is also necessary to locate a preamplifier at 

each segment to reduce glitch pickup. 
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There are four more critical effects, which need to be carefully analyzed in order to 

reduce thek effect on the system reliability to negligible levels. They are listed below with 

the proposed solutions. 

(1) Capacitive coupling between word and sense lines introduces a 2 V voltage 

transient at the sense supply rail when a word line is switched. This problem is 

solved by using a dummy word line for precharging. 

(2) Inductive pickup from word lines can be as high as 2 mV in worst case conditions. 

This is eliminated by allowing a settling time of 10 ns. 

(3) The effect of differing thermal histories of the dummy and accessed sense lines can 

be critical if only one dummy sense line is used. This is reduced to a manageable 

level with the use of 2 sense dummies which alternate during read operations. 

(4) Mismatched charging time constants at the 2 inputs to the preamplifier can 

introduce more noise while slowing the system down. This is solved using the 

"balanced sensing" scheme described in the next chapter. 

Above is a summary of all the problems that needed to be solved when developing the 

low noise front end of the sensing scheme. They are analyzed in detail in the next chapter 

which presents the proposed solutions. 
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3.4 Target Signal to Noise Ratio (SNR) 

Thermal noise has a Gaussian distribution as shown in Figure 3.3 where 

G = Vnoise — sqrt (4kTAfRtotal) (3-1) 

The probability of the noise voltage, Vn being less than any voltage V is given by, 

P(vn<V) = 1 - 0.5 * erfc (V/1.41a ) (3.2) 

Typically, in a memory chip, a noise induced read error rate in the range of 1 in 10^^ is 

considered acceptable. Therefore, if the signal level is Vsig, 

P(vn<Vsig)> 1-10-15 

erfc (Vsig/1.41(y) <2* 10-15 

Figure 3.3 : Distribution of Thermal Noise 
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using the relation 

erfc (x) = exp (-x^) / (x * sqrt ti) (3.3) 

for large x, the above requirement can be simplified to, 

(sqtr(7r/2) * Vgig/ a  )-i * exp [ -(Vsig/1.41<y )2 ] < 2 *  IQ-is (3.4) 

Solving the above equation, it can be seen that it necessary to have 

Vsig/(J = Vgig/vnoise —8 

to satisfy the above condition. 

Therefore, it is necessary to achieve a SNR of 8 per sample. During a read operation of 

the proposed design, effectively 4 samples are taken. This is because two samples of the 

accessed cell output are taken for positive and negative sense currents, with each sample 

consisting of 2 measurements taken before and after the word line is turned on. The 4 

samples increase the total noise by a factor of 2. Thus, it is necessary to have a SNR of 16 

to account for that 

In order to keep a 2:1 safety margin, it is necessary to achieve a raw SNR of 32 for 

each sample. 
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CHAPTER 4. ANALYSIS OF CRITICAL EFFECTS 

4.1 Bounce in Supply Voltage 

The design allows a maximum of +/- 10 mV bounce in the sense supply voltage. A 

worst case bounce of 10 mV gets attenuated by a factor of 2 at the input to the sense 

amplifier due to midline sensing (Figure 4.1). Therefore, there is a 5 mV glitch 

superimposed on the signal output of the accessed line in the worst case. 

When sensing with respect to a dummy, most of this 5mV is in common mode and 

therefore rejected by the preamplifier. The difference signal is only due to the mismatch 

between the accessed line and dummy. Since the mismatch due to process variations is kept 

under 2% for the current process, 

the difference signal = 5x2% = 0.1 mV 

Thus, the effects of supply voltage bounce is reduced to a level that wouldn't interfere 

with the signal. 

4.2 Bounce in Gate Supply 

Considering the voltage mode design in Chapter 2 with T = 25 °C, Vg = 6 V, !§ = 

3mA, and Vdd = 3.9 V (Figure 4.2), 

the gate transistor W/L = 40/0.8 = 50 



www.manaraa.com

46 

VDO 

Ay 

Jl 

accessed 
line 

JË-

dummy 

-3L 

a-

preamp 

Figure 4.1 : Effect of Supply Bounce 

10 mV ^ 
bounce 

6V 
gate tr. 

_J Vds 

Vg 

ov 

Figure 4.2 Effect of Gate Bounce 



www.manaraa.com

47 

Neglecting the spreading resistance component for a first order approximation, the 

resistance of the gate transistor (Rg) can be found using, 

Rg= {K(W/L) * (Vgs - Vt- Vds/2) }-i (4.1) 

Vg = 6V => Rg = 76.08 

Vg = 6V +10 mV bounce => Rg = 75.84 Q 

Vg = 6V -10 mV bounce => Rg = 76.31 Q 

. . the worst case change in resistance = ARg < 0.3 A 

Thus the gate supply voltage bounce introduces a maximum of 0.3 £2 change in drain 

resistance. This is a worst case scenario, because when the distributed model of gate 

transistor is considered, maximum ARg reduces to about 0.2 CI. 

When a sense line is activated, if the drain resistance of the gate transistor changes due 

to gate bounce, the resulting voltage change at the input to ±e preamplifier is, 

ARg x Is/2 = 0.45 mV 

due to midline sensing. 

The dummy line too is similarly affected, and about 96% of this voltage is in common 

mode and rejected by the preamplifier. The differential component is due to any mismatch 

between the gate transistors of dummy and accessed sense lines. This is about 4% in the 

worst case (with AVt= 20 mV and AK = 2.72 |iA/V^), resulting in only 18 |J.V which is 

very much less than the cell ou^ut signal of 0.4 mV. 
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4.3 Temperature Effects 

Figure 4.3 shows the thermal environment for a 1.4 x 7 jim^ MRAM element with 0.5 

fxm Silicon Dioxide insulation ôrom the element to the substrate, and 1 |im insulation firom 

the element to the word line conductor. The thermal conductivity of Silicon is more than 100 

times that of Silicon Dioxide and therefore, the Silicon substrate can be approximated to an 

infinite heat sink [9]. Also, the conductor metals have thermal conductivities more than 100 

times that of Silicon Dioxide and therefore the word line too can be assumed to behave as an 

infinite heat sink to a first order approximation. 

Thus, the steady state temperature rise in MRAM elements due to the sense current can 

be found using, 

power dissipation = Kth * element area * AT * (toxi'^ +tox2'^ ) (4.2) 

where 

Kth= Thermal Conductivity of Silicon Dioxide = 0.014 watts/cm oQ 

power dissipation = (Is)^ * Rgn = 0.54 mW 

AT = 13.12 °C 

This temperature rise increases the element resistance by 1.18 Q which is much larger 

than the change in element resistance when the word current is applied. 

By using a dummy, it is possible to make the voltage change resulting firom increase in 

element resistance due to heating effects, be in common mode at the input to the 

preamplifier. 

In order to achieve this, both the dummy and the accessed sense line should have 

similar thermal histories. If only one shared dummy is used, it is possible for the dummy to 



www.manaraa.com

49 

Al Cu Wd Line 

l|xm 

Silicon 
Dioxide 

0.5 

f Dioxide 
MR element 

Silicon 

Figure 4.3 : Memory bit Cross Section 

be at a higher temperature than the accessed sense line since dummy is always activated 

during a read operation. Since there are two dummies used in this design with each dummy 

active only for a half of a read cycle, both dummies get sufficient time (half a cycle) to cool 

down before being activated again. Simulations have shown that the mismatch due to 

diffaent thermal histories are minimal under these conditions [9]. 
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4.4 Inductive Pickup from Word Lines 

Figure 4.4 shows the layout of word lines and sense lines in a cell array. It can be seen 

that a spike can be generated in the sense rails due to inductive pickup when the word 

current is switched on. This can be estimated as follows. 

The field due to word current (Iw) is given by, 

H = 0.2Iw/r Oe (4.3) 

where 1 Oe = 1 line / cm^ 

Integrating H between 5 [im and 200 |im, 

flux per unit length of sense rail = 0.74 Iw lines/cm 

total flux in the sense loop is given by, 

({, = 0.74 Iw *400* 10^ = 0.03 Iw 

Converting to mks units and substituting for Iw which is 30 mA in this design, 

(j) =9 X 10 

If the word current is assumed to turn on in 10 ns, the induced spike is given by 

Vj^ = d(()/dt = 0.9 mV (4.4) 

Therefore, the worst case glitch due to inductive pickup is 0.9 mV, and by allowing 

about 10 ns for it to die down, this effect can be eliminated. 
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4.5 Capacitive Coupling between Word and Sense Lines 

The capacitive coupling from word rail to a sense rail at each memory element is given 

by, 

Cws = esi02 * Element area / oxide thickness (4.5) 

For the current process, this is approximately 0.4 FF per bit (Figure 4.5). Since there are 

4(X)0 memory elements in a segment, the total coupling capacitance can be lumped as 1 pF at 

each sense power rail as shown in the approximate model of Figure 4.6. 

When a word line is switched on, approximately 2V of voltage transient occurs at the 

word rail [3]. Assuming that this occurs in 10 ns, the generated current transient at sense 

rails is found using, 

i tran = C dv/dt (4.6) 

This current transient of 0.2 mA produces voltage transients of 20 mV at the positive sense 

rail and 14 mV at the sense ground rail. This glitch occurs after autozeroing is done and a 

considerable amount of time has to elapse before it dies down. 

This effect is minimized using a dummy word line (with no cells underneath) which is 

switched on at the beginning of a read cycle to préchargé. Once autozero is completed, the 

word line which accesses the bit is switched on. Now, the transient at word rail is only due 

to the mismatch between the dummy word line and the accessed word line which is typically 

less than 5%. Therefore, the voltage transient at sense rails reduce to ImV at the positive rail 

and 0.7 mV at the ground rail which will die down in approximately 10 ns time. 
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4.6 Balanced Sensing to Match RC Time Constants 

The original scheme was to connect the 256 sense lines in a segment to one input of the 

preamplifier and connect the 2 dummy lines to the other input This scheme (Figure 4.7) 

introduces a substantial amount of noise due to the non-uniform capacitive loading at the 

inputs to the preamplifier. 
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As shown in Figure 4.8, the charging time constants at the 2 inputs to the preamplifier 

differs by a factor of 128. Therefore, the glitches which are in common mode (and are 

expected to cancel each other), themselves generate a considerable difference signal across 

the preamplifier inputs. Also, it takes a long time to reduce the effect of different charging 

time constants. 

The new balanced sensing scheme eliminates the above problem by dividing the 

number of storage sense lines in a segment equally between the 2 input transistors of the 

preamplifier (Figure 4.9). The 2 dummy lines have 2 mux transistors each enabling them to 

be switched between the 2 inputs of the preamplifier. If the group of sense lines containing 

the accessed sense line is connected to one input of the differential pair, the active dummy is 

switched on to the other input together with the other half of sense lines in the segment The 

inactive dummy is switched on to the input where the accessed sense line connects and thus, 

the charging time constants at each input of the differential pair are made equal. 

Therefore, the problem due to different charging times is eliminated and there will be no 

differential component left from common mode signals due to mismatched charging times. 

Thus, the balanced sensing results in a highly improved SNR performance compared to the 

scheme in Figure 4.7. 
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CHAPTER 5. PROPOSED SENSING SCHEME 

5.1 Block Diagram 

Figure 5.1 presents the block diagram of the proposed sensing scheme, which senses 

the very small ou^ut signal of a memory ceU and amplifies it to full logic levels. 

Sense lines are grouped into segments (1 segment = 256 sense lines) each with its own 

preamplifier in order to minimize noise effects. The sensing is in voltage mode with mid-line 

sensing. A sense line contains 16 memory cells each with 60Û resistance. 

The nominal signal at the center of the line is 0.45 mV with a 100 mV (maximum) of 

mismatch. There are 2 shared dummy sense lines per segment for auto-zero purposes. And 

the array is "balanced" for better signal to noise performance. 

The output signal of a memory cell is sensed with respect to that of a dummy cell. This 

difference signal plus the mismatch voltage is amplified by the preamplifier which is a low 

noise differential amplifier with a low gain of 10. Each segment has its own preamplifier. 

The amplified output of the preamplifier (4mV signal + 1 V mismatch), is then routed to 

subsequent stages of the sense amplifier which are shared among all segments. There the 

fast autozero circuit removes most of the mismatch voltage generated by the process 

parameter variations across the die. 
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The next stage, which is a differential amplifier with a gain of 10 (output is 40 mV), 

isolates the fast autozero circuit from the slow autozero circuit Next, the slow autozero 

stage removes any remaining mismatch and limits the noise effects of the fast autozero. 

Then the differential signal is converted to a single ended signal in diffamp 3 which has 

a gain of 5. At this point, the signal is amplified to 200 mV. The bandwidth of aU stages till 

now is quite high, and tend to pass through a large portion of the noise generated by the 

elements. Therefore, a bandwidth limiter is used to filter out and reduce this noise. 

Then the signal is fed to a sample and hold circuit which holds the first sample 

(obtained with positive sense current), and compares with the second sample (obtained with 

negative sense current), to produce a logic level output [11]. 

The S'ont end of this sensing scheme, including the fast autozero circuit is explained in 

detail in the next chapter. The other stages are described in reference [11]. 

5.2 Timing 

Figure 5.2 shows the timing for the proposed sensing scheme. 

tl : Address decoding = 30 ns 

t2 : Switching and settling time for the MR element array 

At the beginning of t2, gate, mux and sense drive transistors are 

switched on. The dummy word line too switches on at this time to 

préchargé. 

= 20 ns 

t3 : Fast autozero time = 60 ns 

The fast autozero transistors which have been on since the beginning 

of the cycle switches off at the end of t3. Slow autozero transistors 

switch on at the beginning of t3. 
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t4 ; Diffamp 2 offset removal time = 20 ns 

t5 : Slow autozero time =150 ns 

t6a : Wait time before turning on the word current = 10 ns 

t6b : Wait time for setding after turning on the word current = 10 ns 

t7 : Delay of BW limiter and sampling time = 125ns 

t8 : Wait time before reversing the sense current = 10 ns 

The slow autozero transistors and the sense drive transistors switch 

off at the end of t8. The first sample is stored in the sample and hold 

stage at the end of t8. 

t9 : Switching and setding time after reversing the sense current = 20 ns 

tlO : Latching time = 10 ns 

Logic level output is latched at this point 

A detailed explanation of the timing diagrams is given in reference [11]. 
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CHAPTER 6. SENSE DRIVER CIRCUITS 

6.1 Circuit Description 

This circuit is designed to meet two main requirements. 

(1) Thermal Stability 

It is necessary to maintain a constant sense current for read operations, at all 

temperatures within the operating range (0 °C to 75 °C). This is achieved by using 

a temperature compensated, regulated power supply. The supply voltage (VDD) is 

varied linearly from 3.8 V to 4.3 V over the operating temperature range. 

(2) Constant input bias to the Preamplifier 

The bias voltage at the input to the MUX transistor (Vsen) should be maintained at 

approximately 2V for both polarities of read sense current and over the operating 

temperature range (Figure 6.1). This is necessary since Vsen becomes the 

common mode input signal to the differential preamplifier. (Any large drifts in this 

voltage can drive the preamplifier out of its linear region causing errors.) 

The sense current supply (Figure 6.1) consists of 2 push-pull driver pairs (M2 and M5, 

M3 and M6). The gate inputs Vconl and Vcon2 control the direction of sense current. 
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(Vconl = INV(Vcon2)) When Vconl is high, Vcon2 goes low, and only M2 and M6 are 

active. Then the direction of sense current is negative. 

Since the 16 MR elements on a sense line take up a total of 2.88 V across them, the 

head room left for the transistors are small. And the regulated supply of about 4.3 V is not 

sufficient to keep the drop across gate transistors reasonably low. Therefore a sense gate 

supply of 6 V is generated on chip for the gate signals of mux and gate transistors. 

By sizing the driver transistors as shown in Figure 6.1, it was possible to maintain the 

bias voltage at Vsen within reasonable limits over the temperature range and for both 

polarities of sense current The W/L ratios of the buried MUX and GATE transistors were 

limited to 106.75/2 and 105.8/2 respectively to achieve maximum cell density [3]. 

The drivers supply a total of 5.6 mA (2.8 mA per sense line) during a read operation 

and 3.2 mA during write operation. The Yds values of the active transistors adjust 

automatically to accommodate this. 

The source and drain spreading resistances of the central gate transistor were estimated 

manually (using the model explained in Chapter 2) and lumped at either side of the gate 

transistor for simulations. (The VTI extractor does not extract spreading resistance values 

from layouts.) The control signals Vconl and Vcon2 are derived from the temperature 

compensated power supply to keep the drift of Vsen to a minimum. • 

Results obtained from simulations carried out over the full temperature range is given in 

Table 6.1. 

6.2 Noise Estimations 

A noise analysis was performed to find the noise generated at the input to the 

preamplifier (including preamplifier noise) in the worst case which is at 75 °C with the 
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Table 6.1 : Simulation Results of the Sense Driver Circuits 

Isense Temp. (C) Vdd (Volts) Vconl Vconl Vsen 

polarity (Volts) (Volts) (Volts) 

+ 0 3.8 0.0 3.8 1.89 

+ 25 3.97 0.0 3.97 1.97 

+ 75 4.3 0.0 4.3 2.14 

- 0 3.8 3.8 0.0 1.72 

- 25 3.98 3.98 0.0 1.8 

- 75 4.3 4.3 0.0 1.86 

sense current polarity set to positive. The equivalent noise resistances are shown in Figure 

6.2. 

signal level = 0.417 mV 

the system BW till the input to the preamplifier = 28 MHz (calculated in Section 6.4) 

.% the noise before bandlimiting = 27.8 |iV 

The bandwidth limiter circuit sets the system bandwidth to 5 MHz in order to limit 

thermal noise [11]. 

the noise after bandlimiting = 11.75 |iV 

the Signal to Noise ratio = 35.4 

Thus the SNR needed to limit the noise i n d u c e d  e r r o r s  t o  l e s s  t h a n  1  i n  1 0 i s  

achieved. 
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6.3 Drain Capacitance of the Mux Transistor 

Since the miix transistor is operating in Ohmic region, the total capacitance at its drain is 

given by. 

Qlmux — Qfl) + Cgd + Cp (6.1) 

where 

Cdb = CJ * Drain Area = Junction capacitance at drain 

Cgd = Cg/2 = Gate to drain capacitance in Ohmic operation 

Cp = CJSW(N) * Peripheral length = Peripheral capacitance of drain 

Since CJ = 238 x lO * F/m2, Cg = 2 FF/^m2 and CJSW(N) = 4.43 x lO'io F/m for the 

process used, 

Cdmux ~ 71.31 FF = 72 FF 
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6.4 Estimation of RC Time Constant and Bandwidth 

The small signal equivalent RC circuit tUl the preamplifier input is shown in Figure 6.3. 

Since each input of the preamplifier is fed by 130 Mux transistor lines, the total drain 

capacitance at each input to the preamplifier is represented by Cdt where 

C(jt = Cdmux X 130 = 9.36 pF 

Since the preamplifier's input transistors are in saturation, 

Cgs = (2/3) * C g  =0.63pF 

Cdt + Cgs = 10 pF 

The time constant of this circuit can be approximated by 

'C — (Rs + Rmux) (Cdt + Cgs) (6.2) 

Preamp i/p 

Rs=383.9 Rmux=178.4 
—i/W* 

— —Cdt + Cgs 
Signal C= 2 X 72 FF 

Figure 6.3 : Equivalent RC Network 
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to give X = 5.6 ns. 

The system bandwidth is given by, 

BW= 1/27CRC (6.3) 

to be 28 MHz. This high bandwidth is limited by the bandwidth limiter stage to reduce 

noise. 

A transient analysis was performed to estimate the settling time of Vsen. The 

resulting waveform is shown in Appendix. Time constant for this circuit was found to be 

about 6 ns as estimated. Since preamplifier and Fast Auto Zero circuits are of very high 

bandwidth, about 10 time constants of of settling time is sufficient for the fast autozero to 

complete. 
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CHAPTER 7. PREAMPLIFIER 

7.1 Circuit Description 

Two possible approaches were considered when designing the preamplifier. One 

approach was to use a self biased inverting amplifier (Figure 7.1). There B1 functions as the 

bias transistor which ensures that the inverter is always biased in the linear region, by 

momentarily shorting the input to the output (Vin = Vout = VDD/2). This is done after the 

mux transistor switches on, and CI charges up to the difference voltage between the output 

of the sense circuit and VDD/2. Then B1 is turned off and the word line is switched on. 

Though this design is conceptually simple, several problems exist One problem is the 

high gain of this stage which is a function of the process parameters. (A gain much higher 

than 10 would saturate the following amplifier stages.) There also exists a problem of 

feedthrough. When B1 switches off after setting the bias, some charge is fed through gate-

drain capacitance of B1 to the gates of Ml and M2 creating an offset This can be reduced 

by connecting a properly sized transistor with its drain and source shorted to point X, and 

switched by the complement of CONBl. It may also be necessary to remove the mismatch 

before this amplifier in order to keep it in the linear region. 

Therefore, the second approach of differential pair was selected for this design (Figure 

7.2). 
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In order to maintain a SNR of 32 at the inputs to the preamplifer, the preamplifier noise 

resistance referred to the gates of the input pair should be approximately 125 A or less. 

Since the input transistor pair operate in saturation, each has an equivalent noise resistance 

of 

Rn = 2/3gm (7.1) 

at the gate. The current source noise is in common mode and therefore gets cancelled off. 

The equivalent noise resistance of the load resister Rl referred to the gate is given by, 

RnL = RL/G2 (7.2) 

where G is the gain of the preamplifier. 

Therefore, the total equivalent noise resistance of the preamplifer is given by, 

Rnt = (2/3gm) + (Rl / G^) = 2/3gm (7.3) 

since the gain is quite large. 

In order for the amplifier equivalent noise resistance to be 125 Q, the input transistors 

need a gm of 0.0053 or higher. Since the amplifier gain is given by 

G = gm RL (7.4) 

the estimated load resistance is 1.88 kA. 
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It is not possible to use a saturated load since a transistor in saturation has a very high 

resistance in the region of 50 -100 k£2. Even transistors biased in linear region is not a good 

choice because they are difficult to match and are only linear over a certain range. They 

require a complex bias generator circuit and offer no real advantage other than a small area 

saving. 

Therefore, permalloy resistors were selected for load resistors. These can be matched 

very well when placed close to each other and has an adequate sheet resistance of 10 fi/sq. 

Since the required load resistance is only about 2k£2, this implies permalloy resistors with 

W/L = 200, which isn't all that big. Therefore, permalloy resistors were selected for this 

design. The current source is implemented using a single n-channel transistor biased with an 

accurate reference voltage. 

7.2 Transistor Sizing 

The average input bias to the preamplifier = 2.01 V 

Since gm = K (W/L) (Vgs - Vt) and gm needs to be larger than 0.00533, a W/L ratio of 

183.5 is selected for the input transistor pair. 

Ids = 0.95 mA 

Also, there is a sufficient voltage drop across the input transistors to keep them in 

saturation. 

For the current source transistor, 

Id= 1.9 mA 

Selecting Vgs = 1.3 V, 

W/L = 323.5 
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Simulations have shown that Flicker noise component is negligible at the operating 

frequency of 5 MHz [1]. Anyway, Flicker noise effects can be minimized by increasing the 

area of input transistors and reducing the bias current Also, the use of minimum length 

transistors introduces the problem of channel length modulation. Therefore,the input 

transistor pair is made large with W/L = 293.6/1.6. 

The current source transistor was sized to have W/L = 388.2/1.2 in order to reduce 

channel length modulation effects. The bias voltage of 1.3 V is generated using a 

conventional voltage divider. 

After doing simulations which take second order effects into account, it was found that 

Rl needs to be increased to 2.2 kO to achieve the specified gain of 10. 

7.3 Bandwidth Estimations 

The ouq)ut impedance of the preamplifier is given by. 

Rout — Rl // To (7.5) 

where ro is the output resistance of the input transistor. Since it is in saturation, 

ro = 1/ Id * X, = 50 kQ 

Rout ~ RL ~ 2.2 k£2 

The drain capacitance at the output is given by, 

Qi = Cdb + Cgd + Cp 

where 

Cdb = junction capacitance at drain 

Cgd = gate drain overlap capacitance (since transistor is in saturation) 
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Cp = peripheral capacitance of drain 

.-.Cd = 0.44 FF 

Therefore, the no load time constant x = RL*Cd = 0.96 ps and the estimated bandwidth 

is 165 MHz. 

7.4 Simulation Results 

The use of permalloy resistors helps to hold the gain approximately steady over the 

temperature range. As the temperature increases, the gm of the input pair reduces, but the 

load resistance increases. Since G = gmRL» this helps to reduce the change in G with 

temperature. 

Extensive simulations showed that the use of a temperature compensated power supply 

is not essential to maintain stability. Therefore a regulated supply of 4.3 V is used. The 

slight shift in the output voltages with temperature is in common mode and eliminated in the 

following stages. 

Simulations carried out for a common mode input range of 1.7 V to 2.15 V, a 50 mV 

variation in Vt, and fuU temperature range showed the differential gain to be stable at 10 

with a linear region of approximately 0.4 V, which is sufficient for the expected input signal 

of 0.4 mV plus the 0.1 V mismatch (Appendix). The amplifier bandwidth was found to be 

about 150 MHz (Appendix). 
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CHAPTER 8. FAST AUTOZERO CIRCUIT 

8.1 Circuit Description 

This stage is necessary to remove the offset voltage due to process parameter variations 

and the offset in tlie preamplifier. 

In previous designs, the cell output signal is directly sent to an auto-zero stage (Figure 

8.1) to remove mismatch before any amplification is done. With a nominal signal level of 

0.4.mV, this is not very practical because of the following reasons. 

1. Insertion of auto-zero circuitry before the preamplifier increases the noise level since 

the auto-zero transistors themselves generate noise. 

2. Auto-zero capacitors and wiring are prone to glitch pickup. This effect is reduced if 

the signal is stronger. 

Therefore, in this design, the memory cell output is immediately amplified at the 

segment itself to keep the noise down. 

The delay in auto-zero time is reduced by using a two stage auto-zero with 

1. a fast auto-zero stage after the preamplifier to quickly reduce the 1 V mismatch to less 

than 4 mV. 

2. a slow auto-zero to further reduce that mismatch to about 0.1 mV while keeping the 

noise introduced by the auto-zero transistors to a minimum. 
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Figure 8.1 : Autozero Circuit 

8.2 Device Selection and Sizing 

The preamplifier and fast autozero circuits are shown in Figure 8.2. The fast autozero 

circuit is designed to achieve a small RC time constant The resistance of the autozero 

transistor, Ra is given by, 

l/Ra=K(WyL)[Vgs-Vt-Vds] 

A minimum size transistor with W/L = 5/2.5 is selected to obtain a resistance of 2 kA. 

Vref = 2.3 V 

(Vg is set to be 6 V.) 

The autozero capacitor is constructed by connecting the two floating capacitances of 

metal 2 to metal 1 and metal 1 to poly in parallel (Figure 8.3). Therefore, the useful 

capacitance is given by, 

Ca = 1 X 10^ pF/|im2 
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Figure 8.2 : Preamplifier and Fast Autozero Circuits 

This scheme has an inherent parasitic capacitance Cp from poly to substrate which is given 

by, 

Cp = 6.5 X 10-^ pF/|im2 

The autozero capacitance Ca is set to 0.3 pF. Therefore, this implies a capacitor area of 

3000 fim^. 

8.3 Circuit Analysis 

The small signal equivalent circuit of the autozero stage is shown in Figure 8.4, where 
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Figure 8.3 : Autozero Capacitor 

Ro = output resistance of the preamplifier = 2.2 kQ 

Cd = drain capacitance at the preamplifier output = 0.44 FF 

Ca = autozero capacitance = 0.3 pF 

Cp = parasitic component of autozero capacitor = 0.195 pF 

Ra = resistance of the autozero transistor = 2kQ. 

Cda = drain capacitance of the autozero transistor = 0.008 pF 

Cg = gate capacitance of the diffamp 2 input transistor = 0.075 pF [11] 

The time constant of the autozero stage can be approximated by. 

t — CA (Rq + Ra) = 1.3 ns (8.1) 
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The noise generated by the resistors Ro and Ra in the equivalent circuit of Figure 8.4 is 

estimated as follows; 

noise voltage due to Ra = sqrt (4kTAf*Ra) (8.2) 

For a first order low pass filter, 

Af = effective noise BW = 1.57 x 3 dB BW 

and the 3dB BW = l/(27cRaCa) 

noise voltage due to Ra = sqrt ( 4kTRa * 1.57/(27cRaCa) ) 

= sqrt ( 4kT * 1.57/(2îcCa) ) = 0.12 mV 

Similarly, 

noise voltage due to Ro = sqrt ( 4kT * 1.57/(27cCa) ) * (Ra / (Ra + Ro)) 

= 0.06 mV 

The charge stored in the autozero capacitors due to element noise can be estimated as 

follows; 

system BW (till fast autozero) = 28 MHz 

Ca 

Cd Cp 
T 

I 
Cda Pg 

Figure 8.4 : Small signal equivalent circuit 



www.manaraa.com

80 

. . equivalent noise bandwidth (ENBW) = 44 MHz 

Since the element noise after limiting the bandwidth to 5 MHz was found to be 11.75 |J.V 

(see Chapter 6.2), the noise charge can be found using, 

noise charge = 0.707 * Band limited noise * Preamp gain * sqrt (EMBW/5 MHz) 

Thus, the noise charge due to the memory elements amounts to 0.252 mV. 

. . total noise voltage = 0.3 mV 

The signal attenuation due to fast autozero can be estimated using 

G= Ca/(Ca + Cda + Cg) =0.78 

Therefore, the signal is attenuated to 78 % of that at the input to the autozero stage. 

It is necessary to reduce offset at the input to the preamplifier to 10% of the noise 

charge on both capacitors. 

offset = 0.3 * sqrt(2) / 10 = 42.4 [iV 

In order to reduce the offset to 42.4 p,V, assuming a 10% error in the system time constants, 

the wait time should be at least 11 time constants (= 60 ns). 
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CHAPTER 9. CONCLUSIONS 

Eventhough the MRAM technology was originally developed for space and military 

applications, it has been found to be well suited for commercial applications as well. 

The sensing technique presented in this thesis is designed for such an application, in 

high density memories. The technique uses a new mode of sensing ("voltage mode") which 

is superior in performance to the existing "current mode" sensing. Also, voltage mode 

sensing is less affected by scaling of dimensions and voltages. 

The proposed sensing scheme achieves high density by sensing very small signal 

outputs of small memory cells, and eliminating the usual "ping pong" matching array. This 

scheme, which was developed for magneto resistive materials with a MR coefficient of 

2.5%, senses a nominal signal of 0.4 mV in a 800 ns read cycle. 

MRAM technology, which is still in the research stages has been developing very 

rapidly during the past few years. The discovery of Giant Magneto Resistance (GMR), 

which improves the MR coefficient by more than 100%, has been a giant leap forward in 

this development process. GMR materials developed so far have achieved a MR coefficient 

in the range of 6.5% - 8% with a sheet resistance of 25 O/sq. If the proposed sensing 

scheme is used on GMR cells, it is possible to improve the density by a factor of 2 while 

improving the signal level by a factor of 3. This implies a possible speed up of 4 to 8 times 

with access time in the range of 100 - 250 ns. 
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Therefore, with the use of GMR materials, MRAMs have the potential to surpass the 

performance levels of DRAMs and other popular memory technologies, and probably 

become a contender to a large portion of the computer memory market 
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APPENDIX . SIMULATION RESULTS 
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Figure A.l Transient Response of the Sense Lines 
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Figure A.7 Transient Response of the Autozero Circuit 
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